Sameer Deshmukh

deshmukh.m.aal@m.titech.ac. jp

School of Computing, Tokyo Institute of Technology

Abstract

One of the ways of computing the inverse of or solving very large dense matrices (more than a million by
a million) is to calculate the LU decomposition. The traditional way of doing this was to use the Gaussian
elimination, which requires O(N 3) time to compute an LU decomposition. This obviously does not scale
well.

In order to reduce the time to computation, we use a hierarchical representation of the matrix using low
rank and full rank blocks that can compute the LU decomposition in O(/N) time with some error due to
approximation. The technique that we use allows tuning the accuracy of calculation as a trade off for speed.

Introduction

LU Decomposition

The LU decomposition 1s a very widely used matrix transformation in many operations ranging from Deep
Learning to Computational Fluid Dynamics. It works by splitting a dense matrix into a lower and upper
diagonal matrix.

Regular LU Decomposition

L

The regular method is usually used for smaller matrices where much optimization is not necessary.

Block LU Decomposition
U AO1 0
AOO AO1 L ] AO1
—> > >
A10 All A10 All A10 All
Sub-divide into blocks. LU decompose AOO Conduct TRSM on
with GETRF. off-diagonals.
1. Factor Agg = LogUqo. l
2. Compute L) = AlOU()_ol and Uy = L&)lAlg.
AO0O AO1
3. Form the Schur’s compliment S = A1 — L1gU) «—
and factor L11Uy1 = S. U
A10 L
LU decompose A11 (now Reduce. A,ll with GEMM.
reduced) with GETRF. This is the Schur
complement.
The Block LU Decomposition works by splitting the larger matrix into blocks, where each block can be
computed individually. This more useful for larger matrices and is the basis for our technique.

The Gaussian Elimination method requires O(N 3) time for computing the LU decomposition. The limitations
of this approach are quickly realized if N 1s very large.

Hierarchical Matrix

. Low Rank Block

. Dense Block

The Hierarchical Matrix allows us to express a dense matrix as Hierarchical blocks of Full Rank and Dense

matrices. The Low Rank Matrix is represented as a product of the Singular Value Decomposition (SVD) of
the corresponding dense matrix.

As can be seen in the above figure, most of the information of the matrix 1s contained within the dense
blocks (blue) that are centered around the diagonal of the matrix.

Use of Hierarchical matrices can reduce the cost of computation to O(/N) and the memory requirement to
O(N). This reduction in time and space can be achieved by maintaining an accuracy of 98%.

Kronecker Factorization

The Fisher Matrix 1s obtained from a second order optimization equation:

orTor\ "
9¢+19t77<89 89) %

The boxed term 1s the Fisher matrix. It can have dimensions in the order of several millions. Inverting this
matrix 1s a major challenge.

MPI Parallelization of Low Rank Matrices

Ri10o Yokota Lab

Hierarchical Low-rank?

Fisher Matrix

/

oJ 1 aJ
00 006

nm X nm

AW nxn

4
N\

m X m

G A

Kronecker Factorization
We plan to use the HMatrix LU decomposition technique on the A matrix above for the inversion.

Distributed Hierarchical Matrix

The LU decomposition has a hard data dependency on the top-left corner block. The computation cannot
proceed unless the top left block has finished computation. The distribution of the matrices happens in a

block-wise manner in 8 modified block cyclic Iilanner. It can be demonstrated by the following figure:
0

(\O

o

=

. Low Rank Block

. Dense Block

N

w

. Data Dependency

AN

Process number of block

o1

(&)

\l

As can be seen in the above figure, the green numbers indicate the data dependency and the white
numbers indicate the process on which the particular block exists. The level of the hierarchical matrix 1s
indicated by the numbers on the top left corner. The actual computation takes place only at the lowest level
(level 2 1n this case). A data dependency graph of the above computation would look as follows:

The Low Rank blocks exist on the same processor because they do not occupy a lot of data, which reduces the
communication cost. The cost of performing a gemm (dense matrix multiplication) or t rsm (dense matrix
LU decomposition) is much lesser than cost of communication.

We still distribute each dense block over different processes because the space requirement of the dense block
1s large and time for computing gemm and t r sm computations 1s non-trivial.

Future Work

In the future we will work on optimizing the library such that the gemm and t rsm calls are optimum and
communication 1s fully optimized for matrices of any dimension.

Conclusion

So far in our research, using Hierarchical matrices for solving large problems seems to be a promising new
way of accelerating training of Deep Neural Networks.



